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Abstract. The critical analysis of various magnetically semi-disordered compounds with spinel
structure is reported. The magnetic equation of state is valid in the vicinity of the different
observed transitions and the critical exponents are determined by different methods. At
the magnetic–paramagnetic transition, the critical exponentsβ and δ are larger and smaller
respectively than those found for 3D Heisenberg ferromagnets. The exponent variations are
explained phenomenologically and allow a classification of the compounds to be made according
to the degree of disorder. At low temperature, for some materials a mixed state occurs below the
re-entrant transition, characterized by critical exponents, while for other materials local canted
states exist, where the transverse spin components block progressively, revealing an absence of
a true phase transition. At high temperature, a well established spin-cluster regime occurs in
some cases. Two transitions with critical exponents are evident, the magnetic–cluster and the
cluster–paramagnetic transitions.

1. Introduction

Derived from general theory on phase transitions based on the concept that this transition
is describable by an order parameter [1], the magnetic equation of state near the transition
temperatureTC at which the transition to the paramagnetic phase occurs leads to a unique
relationship between the normalized quantitiesm = MS/|t |β and h = Hint/|t |βδ with
t = 1 − T/TC , whereMS is the spontaneous magnetization,Hint is the internal field
equal to the applied field corrected for the demagnetizing field andβ andδ are the critical
exponents. This equation can be written as follows:

m = f
(
h,

t

|t |
)
= f±(h) (1)

which means thatm is described as a function ofh by two curves,f−(h) and f+(h) for
T < TC andT > TC , respectively.

For an ideal ferromagnet, the temperature dependence of the order parameterMS and
its derivative susceptibilityχ = ∂MS/∂Hint , which corresponds to the initial susceptibility,
can be described by the following power laws:

MS ∝ tβ for T > TC andHint = 0 (2)

χ ′ ∝ (TC − T )γ ′ for T < TC andHint = 0 (3)

χ ∝ (T − TC)γ for T > TC andHint = 0 (4)

MS ∝ H 1/δ
int at T = TC. (5)
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In fact, it can be demonstrated that only two of these critical exponents are independent
and the others are related to them via the scaling law [2]

γ = γ ′ = β(δ − 1). (6)

The scaling analysis was applied firstly to Ni, CrO2 and CrBr3 [3–5] and later to
numerous ferromagnet and ferrimagnet systems.

However, theγ -value for a three-dimensional ferromagnet(γ ∼= 1.38) does not recover
the Curie–Weiss behaviour

χ = Cp

T − θp
in the paramagnetic state. For this state,γ = 1 if θp = TC or if T →∞. This fact has led
to the introduction of an effective exponentγ (T ) defined by the following equation [6]:

γ (T ) = (TC − T )∂(lnχ)
∂T

(7)

which shows a monotonic variation fromγ ∼= 1.38 (nearTC) to γ = 1 (T → ∞). We
note that using the variablet ′ = 1− TC/T , which implies some slight modifications of
the scaling hypothesis, allows one to reproduce the true paramagnetic properties with an
exponentγ+ now defined [7] as

χ ∝ (t ′)γ
+

T
. (8)

However, we shall use the variablet in our analysis in order to compare our results to
others,t being almost always used.

For a long time, much attention has been paid to studying the influence of quenched
spatial order on the magnetic properties of amorphous ferromagnets [8]. The critical
phenomena of such materials have received increasing experimental and theoretical attention
[9–11]. In the case of these materials, it has been shown that the critical temperature range
can be described by the homogeneous three-dimensional Heisenberg model. In contrast,
whereas the temperature dependence ofγ (T ) in the intermediate range is monotonic
for homogeneous ferromagnets and ferrimagnets, there is a characteristic non-monotonic
variation of γ (T ) for structurally disordered ferromagnets which has been explained by
taking into account the fluctuation of the exchange integrals due to topological disorder [12].

Numerous studies have been devoted to the scaling analysis of magnetically semi-
disordered or disordered systems for several reasons. Firstly, scaling properties reveal in
principle a magnetic phase transition. In contrast, the absence of such properties indicates
instead a progressive change of the magnetic state, such as the blocking process of the
magnetic moments of fine particles [13]. Secondly, the values of the critical exponents
allow features such as the kind of magnetic phase present, its dimensionality and the kind
of disorder. Finally, the analysis permits the determination of the transition temperature,
often difficult to measure by using other techniques. Three types of magnetic phase have
been mainly investigated: the spin glasses, the re-entrant ferromagnets and systems with
random anisotropy.

For spin glasses, for whichMS vanishes, the scaling laws are expected to be operant
for non-linear magnetization because, forT > Tg, the magnetization is proportional to 1/|t |
wheret = 1− T/Tg, which induces singular properties atTg. Assuming a phase transition,
the non-linear susceptibilityχnl can be written [14] as follows:

χnl

|t |β = f
(

h2

|t |β+γ
)

(9)
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whereh = µBgH/kT .
However, the critical exponents which are found strongly differ from one system to

another, probably due to the differences between the ranges of fields and temperatures for
which the critical exponents were determined [15].

Another kind of system has attracted considerable interest during recent years, namely
the re-entrant ferromagnets. From the theoretical point of view, different approaches have
been taken in an effort to understand the occurrence of the re-entrant transition. On the
basis of the mean-field theory for an Ising system, Sherrington and Kirkpatrick (SK) [16]
reported the possibility of a transition from the ferromagnetic to the spin-glass phase,
at low temperature, in random systems with mixed ferromagnetic and antiferromagnetic
interactions. Gabay and Toulouse [17] extended the SK theory to a Heisenberg system and
suggested the existence of two transition temperatures; they found that, at low temperature,
an unsaturated long-range ferromagnetic order can coexist with a spin-glass phase among
the transverse components of spins. Numerous experimental results (see for example
references [18–22]) are to some extent in agreement with the theoretical predictions. General
methods employing the scaling analysis for obtaining a simple form of the magnetic
equation of state have been used for the ferromagnetic–paramagnetic transition and the
re-entrant transition [23–28]. At the ferromagnetic–paramagnetic (FM–PM) transition, the
exponents are generally close to the classical 3D Heisenberg values. A scaling of the
magnetic isotherms was also obtained at the re-entrant transition temperatureTr . In this
case,t = T/Tr − 1, which means that the branchf− (magnetic in the FM–PM transition)
corresponds toT > Tr , and hence to the (perturbed) ferromagnetic phase, and that the
branchf+ (paramagnetic in the FM–PM transition) corresponds toT < Tr , and hence
to the mixed phase. The critical exponents determined depend sensitively on the systems
studied; however, theδ-values are generally smaller than those found for the corresponding
FM–PM transition while theβ-values are similar.

Several studies [29–34] have reported critical phenomena in magnetic systems with
either a weak or a strong random anisotropy, for which the spin direction varies from site
to site. As predicted by Chudnovskyet al [35], four kinds of magnetic phase are observed
when increasing the applied field. Firstly, a speromagnetic or sperimagnetic ordering takes
place. The phase so created is very analogous to spin glasses in which the spins are
frozen along their local anisotropy directions. Secondly, a correlated-spin-glass (CSG) state
occurs, for which the spin directions are locally correlated but the total magnetization is
zero. Thirdly, a ferromagnetic state with wandering axes (FWA) arises. Here, the resulting
magnetization is not equal to zero and small deviations from the ferromagnetic order occur.
Finally, at high field, an almost purely ferromagnetic phase exists. The field limit separating
the different phases increases with the ratioD/J0, whereD is the anisotropy constant and
J0 the exchange integral. For speromagnetic order, the non-linear magnetization follows a
spin-glass scaling [32–34], while for the FWA state, the ferromagnetic scaling is operant over
wide ranges ofh and t . The values of the critical exponents are generally not too far from
those valid for 3D Heisenberg ferromagnets. However, for some systems [30], important
deviations occur. The nature of the phase transition and the effects of a random anisotropy
on the ferromagnetic critical behaviours, as a function ofD/J0, have been reported in
reference [31].

In a preliminary work [36], we have shown that the ferromagnetic scaling is also operant
in magnetically semi-disordered ferrites showing local canted states. The critical exponents
β and δ were found to be respectively higher and lower than those found for a pure
ferromagnet. In this work, we extend our study to various magnetically semi-disordered
systems: ferrites, manganites, thio-chromite and seleno-chromite spinels, which present
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local canted states, or re-entrant transition or spin-glass-like states, according to the system
and the composition.

Table 1. Compositions of the samples studied.

System Composition studied

A; Cd1−xZnxCr2S4 x = 0, 0.1, 0.2, 0.3, 0.4, 0.5
B; Cd1−xZnxCr2Se x = 0.35, 0.45, 0.55
C; Li0.5+x/2TixFe2.5−3x/2O4 x = 1.20, 1.25, 1.32
D; Li 0.5Fe2.5−xAlxO4 x = 1.75, 1.625, 1.5, 1.375
E; Zn1−xMgxFe2O4 x = 0.1, 0.2, 0.3
F; NixCd1−xMn2O4 x = 0.8, 0.6

2. Experimental procedure

The samples studied are listed in table 1 together with their compositions. They correspond
to various systems.

Systems A and B present spinel structure. The magnetic atom Cr3+ occupies the
octahedral B sites. The frustrations arise from the coexistence of superexchange magnetic
interactions of opposite signs: ferromagneticJ1 between first neighbours and antiferro-
magneticJ2 between first higher-order neighbours. The ratioJ1/J2 depends on the type of
ion (Zn or Cd) occupying the tetrahedral A sites and is sensitive to the fluctuations of the
concentration; hence semi-disordered or disordered structures can be expected.

Systems C, D and E correspond to ferrite compounds. The magnetic atoms Fe3+ occupy
both the tetrahedral sites A and the octahedral sites B, the Fe populations depending on the
system and the composition. The magnetic atom concentrations at the two sites are roughly
the same for systems C and D, while for system E the magnetic atoms are mainly at B sites.

System F also shows a spinel structure. It contains two magnetic atoms, Ni2+ mostly at
B sites and anisotropic Mn3+ at both sites. For this system, the magnetic atom concentration
is rather large, but a complex magnetic structure can be expected due to the effect of the
strong anisotropy of Mn3+. The preparation of all of the systems has been described
elsewhere: for systems A and B in [37] and for systems C, D, E and F in [38], [39], [40]
and [41], respectively.

Isothermal magnetization measurements for intermediate fields 0.01 6 H 6 1.8 T
have been performed for the temperature range 4.2–550 K by means of a vibrating-sample
magnetometer (VSM). The high-field curves (H 6 20 T) have been measured for the
temperature range 4.2–300 K at the Service National des Champs Intenses (SNCI) at
Grenoble.

3. General properties of the systems studied

All of the samples studied show a semi-disordered or disordered magnetic structure.
For system A, starting from a ferromagnetic state (x = 0, TC = 85 K), re-entrant

properties are observed for 0.1 6 x 6 0.2, characterized by a plateau of the alternative
(real-component) (a.c.) susceptibility forT < TC and a drop ofχ ′ac at low temperatures.
Two maxima ofχ ′′ac (the imaginary component of the ac susceptibility) are observed. When
x > 0.2, the properties are gradually modified, leading to more disordered magnetic states.
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For x = 0.3 and 0.4,χ ′ac shows a broad hump, centred at around 60 K, up to around 110 K.
But no χ ′′ac-maximum is detected.χdc shows an almost constant value over the range 60–
110 K and falls rapidly at 115 K with large and strongly field-dependent irreversibilities.
These puzzling properties can be explained as follows. Spin clusters can be expected
below 120 K and grow up to 80 K, then merge in the infinite magnetic matrix at a certain
temperature which corresponds to the transition from magnetic long-range order towards a
cluster state. We remark that the cluster–paramagnetic transition temperature (Tcl ∼ 115 K)
is higher than theTC-value of the ferromagnet CdCr2S4 (85 K). In a homogeneous state,
such an increase is not possible. Forx = 0.5, the properties are very similar to spin-
glass properties but the non-linear susceptibility does not diverge. This means that a true
spin-glass transition does not occur and that spin-glass-like properties are present [42, 43].

For system B, several concentration ranges can be distinguished. Forx 6 0.41, the
samples behave ferromagnetically. For 0.45 6 x 6 0.49, the samples behave ferro-
magnetically but present, at low temperature, a decrease of the susceptibility with the
temperature and irreversible phenomena. Thus, re-entrant properties are to be expected.
For 0.526 x 6 0.575, a broad maximum arises at aroundT = 24 K and irreversibilities
occur below 11 K. Finally, for 0.66 x 6 1, the samples behave antiferromagnetically and
no transition is detected at low temperatures [44].

The properties of the three systems C [45–47], D [39, 48] and E [40, 49, 50] for the
compositions studied are similar. A non-linear continuous increase of the magnetization with
the applied field is observed at all temperatures untilH = 20 T. This means that canted
spin structure occurs for any temperature lower thanTN . However, in-field M̈ossbauer
spectroscopy reveals a canted structure at low temperature but an apparent collinear structure
above a certain temperature well belowTN . This has been interpreted in terms of local
canted states, where the transverse spin component relaxes following a thermally activated
process [45]. The zero-field-cooled and field-cooled magnetization measurements show
strong irreversibilities as for a spin-glass-like state. These irreversibilities are strongly field
dependent over the whole temperature range belowTN and disappear at intermediate fields.
The irreversible phenomena depend on the coercive-field strength which is small just below
TN , but very high at very low temperature where a hysteresis loop time dependence is
observed. Studies of the thermoremanence for system C show that the magnetic viscosity
depends on the applied field and that, when increasing the temperature, the logarithmic
slope first increases and then decreases. All of the low-field properties can be explained on
the basis of a local canted structure, where the transverse spin component relaxes at high
temperature and progressively blocks when decreasing the temperature. A review of the
magnetic properties of substituted ferrites can be found in reference [51].

In the case of system F, the general properties described above for canted ferrites seem
valid. However, at low temperature, it is certain that the anisotropy induced by Mn3+ ions
modifies the properties, acting on the domain structure and on the canting angles. For a low
substitution rate and at low temperature, the random substitution of diamagnetic ions at A
sites causes a substantial canting at B sites, while for isotropic ferrite systems no canting is
observed. This effect of random anisotropy leads to modification of the magnetic properties
and results in local canted-state features. For high substitution rates, the properties are
similar to those found for the spin-glass-like state [52].

4. Results

Examples of the temperature and applied field dependences of the magnetization are shown
in figure 1 (SNCI measurements) and figure 2 (VSM measurements).
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Figure 1. The temperature and field dependence of the magnetization for Mg0.2Zn0.8Fe2O4.

Figure 2. The temperature and field dependence of the magnetization for Cd0.8Zn0.2Cr2S4.

4.1. Methods for the determination of the critical exponents

For determining the critical exponents, we have used three methods: scaling plots, modified
Arrott plots andδ-determination from the critical isotherm.

The scaling plots are based on equation (1),m = f±(h), where the plus and minus signs
denote the ferromagnetic and paramagnetic regions respectively. Plotting ln(m) versus ln(h)
yields data collapsing onto two branches if the parametersβ, δ andTC are correctly chosen.
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Figure 3. A scaling plot for Cd0.65Zn0.35Cr2Se4 at the magnetic transition.

Figure 4. A scaling plot for Cd0.7Zn0.3Cr2S4 at the magnetic transition.

The upper branch represents the data forT < TC and the lower branch those forT > TC .
Examples of plots are shown in figures 3 to 7. In addition, the critical exponentγ can be
calculated from equation (5). A difficulty occurs as regards the choice of the ranges oft

andh in which the scaling operates. In ferromagnetic materials, these ranges are narrow but
the exponent values could depend on the ranges chosen [53]. Therefore, we have used the
following procedure. In a first step, we have considered all of them- andh-values which
collapse onto the two branches, taking into account the measurement accuracy. In a second
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Figure 5. A scaling plot for Cd0.6Zn0.4Cr2S4 at the magnetic transition.

Figure 6. A scaling plot for Li1.1Ti1.2Fe0.7O4 at the magnetic transition.

step, we reduced as far as possible both thet- andh-ranges. No significant deviation for
the critical exponents determined in the first step was observed for our samples. We note
that we have used the internal fieldHint for the scaling plots, i.e. the applied field corrected
for the demagnetizing field evaluated from the sample shape.

The Arrott–Noakes equation [54], which was first postulated for the magnetic phase
transition of pure nickel single crystal, is another independent possibility as a basis for the
evaluation of the critical exponentsβ andγ from the measured isotherms. In the modified
Arrott plot, the data are represented in the formM1/β versus(Hint/M)1/γ and the exponents
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Figure 7. A scaling plot for Mg0.2Zn0.8Fe2O4 at the magnetic transition.

Figure 8. A modified Arrott plot for Li0.5Fe0.875Al 1.625O4 at the magnetic transition.

β and γ are chosen in such a way that the isotherms around the critical one represent as
closely as possible a set of straight lines, the critical isotherm (T = TC) being the one
which crosses the origin. A typical shape of graph is presented in figure 8. Equation (4)
is assumed to be valid both below and aboveTC , yielding the same susceptibility exponent
γ = γ ′ for both temperature regimes. We have tested the validity of the equation of state
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Figure 9. The field dependence of the critical isotherm for Cd0.45Zn0.55Cr2Se4 at the magnetic
transition.

(4) by inserting, for the low-temperature isothermsT < TC , a modified value ofγ ′. In all
cases, the quality of the low-temperature plot deteriorates forγ ′ 6= γ , with a large scattering
of the data around straight lines.

The field dependence of the magnetization on the critical isothermT = TC is given by
equation (5). Representing the data in the form ln(Hint ) versus ln(M) yields for T = TC a
nearly straight line (figure 9) and the critical exponentδ can deduced from the slope.

4.2. Critical exponent values

For the magnetic–paramagnetic transition, critical exponents can be determined for all of
the samples. The results are given in table 2. A good agreement is obtained between the
three methods.

As we have discussed in the above section, some samples from systems A and B show
at low temperature re-entrant transitions. On the other hand, for the ferrite systems C, D and
E, the low-temperature properties resemble re-entrant properties. Hence, we have tried to
apply the scaling laws near the re-entrant transition (systems A and B) and near the possible
re-entrant transition for the other systems. In this case, the same equation of state is valid,
with now t = T/Tr − 1. We have only succeeded for systems A and B, and the results
are indicated in table 3. An example of a scaling plot is shown in figure 10. For the other
systems, additional magnetization isotherms have been measured for the temperature region
in which the transition could occur in order to ascertain that the scaling cannot operate.

Finally, for some samples, a cluster regime is well established over a certain temperature
range below the transition temperatureTcl (see the section above). For these samples, the
transition temperatures obtained from the scaling at the magnetic transition (table 4) are
well below the temperature at which true paramagnetic properties first appear. Therefore,
we have tried to apply the scaling to the cluster–paramagnetic transition. The results are
given in table 4 and one example of a scaling plot is shown in figure 11.
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Table 2. Critical temperatures and critical exponents for the magnetic–paramagnetic transition
as derived from different methods: scaling plots (SP), modified Arrott plots (MAP) and critical
isotherms (CI) for the samples studied. In the case of scaling plots, the exponentγ is calculated
from equation (6). The ranges oft- andH -values for which the scaling plots are valid are also
given (H in tesla).

SP MAP CI Validity range

System;x TC β δ γ β γ δ t H

A; 0 84± 1 0.38 4.9 1.5 0.40 1.4 4.65−0.06, 0.08 0.01, 1.8
A; 0.2 53± 2 0.9 1.9 0.8 0.9 1.0 4.95 −0.25, 0.3 0.01, 1.8
A; 0.3 40± 2 0.9 1.7 0.65 0.9 0.7 1.8 −0.25, 0.3 0.01, 1.8
A; 0.4 29± 2 0.9 1.3 0.3 1.2 0.25 1.7 −0.25, 0.55 0.01, 1.8
A; 0.5 19± 1 1.2 1.2 0.24 1.15 0.25 1.2 −0.16, 0.55 0.01, 1.8
B; 0.35 66± 1 0.4 4.7 1.5 0.40 1.45 4.85−0.09, 0.13 0.01, 1.8
B; 0.45 52± 2 0.42 4.7 1.55 0.40 1.50 4.75−0.15, 0.12 0.01, 1.8
B; 0.55 42± 2 0.5 2.8 0.9 0.50 0.9 2.75−0.28, 0.19 0.01, 1.8
C; 1.20 170± 3 0.50 2.5 0.75 0.50 1.0 2.2 −0.07, 0.11 0.01, 1.8
C; 1.25 160± 5 0.9 2.0 0.8 1.0 1.0 2.1 −0.7, 0.4 0.1, 15
C; 1.32 70± 5 1.0 1.8 0.8 1.0 0.7 1.7 −0.8, 0.25 0.1, 20
D; 1.375 230± 20 0.7 2.2 0.85 0.7 0.856 2.8 −0.72, — 0.5, 20
D; 1.5 170± 10 0.9 1.9 0.8 0.90 0.80 1.9 −0.7, 0.3 0.5, 20
D; 1.625 75± 10 1.0 1.8 0.8 1.0 0.7 1.7 −0.5, 1.1 0.5, 20
D; 1.75 35± 5 1.2 1.35 0.42 1.2 0.40 1.35−0.4, 1 0.5, 20
E; 0.3 200± 20 0.90 2.6 1.44 0.90 1.2 2.4 −0.8, 0.15 0.1, 20
E; 0.2 135± 10 1.0 2.0 1.0 1.0 0.90 1.9 −0.7, 0.55 0.1, 20
E; 0.1 75± 5 1.2 1.3 0.42 1.20 0.45 1.35−0.7, 0.35 0.1, 20
F; 0.8 60± 3 0.7 1.8 0.56 0.70 0.60 1.7 −0.6, 0.3 0.5, 16
F; 0.6 35± 2 0.7 1.8 0.56 0.70 0.70 1.8 −0.6, 0.4 0.5, 16

Accuracy 10% 7% 10% 10% 10% 5%

Table 3. Critical temperatures and critical exponents for the re-entrant transition as derived from
different methods: scaling plots (SP) and critical isotherms (CI) for samples where the scaling
is operant. For the scaling plots, the exponentγr is calculated from formula (6). The ranges of
t andH for which the SP is valid are also given (H in tesla).

SP CI Validity range

System;x Tr βr δr γr δr t H

A; 0.2 18± 1 0.9 1.5 0.45 1.4 −0.1, 0.1 0.01, 0.4
A; 0.3 16± 1 0.9 1.45 0.41 1.45−0.12, 0.12 0.01, 0.4
A; 0.4 13± 1 1.0 1.3 0.3 1.3 −0.15, 0.08 0.01, 0.4
B; 0.55 19± 1 0.5 1.5 0.25 1.5 −0.16, 0.16 0.02, 0.2

Accuracy 5% 5% 10% 5%

5. Discussion

Our analysis of the critical behaviours has been carried out for spinel compounds which
exhibit different types of magnetic order (ferromagnetism, perturbed ferromagnetism, mixed
states and local canted states) and different types of transition (magnetic–paramagnetic, re-
entrant and cluster–paramagnetic). We highlight three main results. Firstly, the different
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Figure 10. A scaling plot for Cd0.8Zn0.2Cr2S4 at the re-entrant transition.

Figure 11. A scaling plot for Li1.16Ti1.32Fe0.52O4 at the cluster–paramagnetic transition.

methods which have been applied for the determination of the critical exponents lead to
consistent results, within the error limits. Secondly, the scaling equation is found to be
satisfied for all of the samples in the region of the magnetic transition. Finally, for some
samples, the scaling is operant in the regions of the re-entrant transition and of the cluster–
paramagnetic transition, revealing true phase transitions. We will discuss these results and
the values of the critical exponents for (i) the magnetic transition, (ii) the re-entrant transition
and (iii) the cluster–paramagnetic transition.
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Table 4. Critical temperatures and critical exponents for the cluster–paramagnetic transition as
derived from different methods: scaling plots (SP) and critical isotherms (CI) for the samples
where the scaling is operant. For the scaling plot, the exponentγr is calculated from formula (6).
The ranges oft andH for which the SP is valid are also given (H in tesla).

SP CI Validity range

System;x Tcl βc δc γc δc t H

A; 0.3 110± 5 2.3 1.2 0.46 1.2−0.14, 0.31 0.01, 1.8
A; 0.4 110± 5 2.4 1.2 0.48 1.2−0.18, 0.27 0.01, 1.8
A; 0.5 90± 5 2.1 1.1 0.42 1.1−0.1, 0.33 0.01, 1.8
C; 1.32 210± 5 2.5 1.2 0.5 1.2−0.15, 0.07 0.05, 1.8
F; 0.2 195± 10 2.2 1.2 0.44 1.1−0.15, 0.14 0.01, 1.8

Accuracy 5% 5% 10% 5%

Table 5. Typical values of the critical exponents for (1) 3D Heisenberg ferromagnets and
(2) amorphous ferromagnets showing the re-entrant transition at low temperature.

Material TC β δ γ Reference

(1) CrO2,Ni 627 0.378 4.58 1.34 [3]
Ni 386 0.34 5.79 1.63 [3, 4]
CrB3 33 0.368 4.30 1.215 [5]
Fe84B16 588 0.38 4.30 1.38 [8]

(2) Fe10Pd72Si18 48 0.4 5.0 1.60 [58]
Gd72Ga18B10 111 0.48 4.8 1.82 [27]
(Fe0.68Mn0.32)75P16B6Al 3 100 0.4 5.3 1.72 [25]

Table 6. Typical values of the critical exponents for materials with random anisotropy in the
FWA state (see the text); also given is the ratio of the anisotropy constantD to the exchange
integral valueJ0 and the applied field range for which the scaling is valid (H in tesla).

Material D/J0 TC β δ γ H Reference

Tb65Co35 0.32 89.1 0.46 4.5 1.61 0.1, 5.5 [29]
(Dy0.914Y0.086)Al 2 0.66 47.5 1 2.5 1.5 — [30]
(Dy0.625Y0.375)Al 2 — 27.5 0.61 2.9 1.16 0.03, 0.5 [30]
Nd50Co50 0.008 164 0.39 4.0 1.17 0.01, 5.5 [31]

5.1. Magnetic transitions

Firstly, let us recall some typical values of the critical exponents for 3D Heisenberg
ferromagnets, amorphous compounds showing a re-entrant transition at low temperature
(table 5) and materials with a random anisotropy (table 6). We remark that, for amorphous
compounds and for some of the materials with a random anisotropy, the exponent values
are not too far from those found for Heisenberg ferromagnets (β = 0.3639,δ = 4.743 and
γ = 1.3873 [55]) with aβ-value slightly higher, while for the other compounds with a
random anisotropy, strong deviations are observed.

For our samples, the exponent values found for three compounds, i.e. CdCr2S4 (system
A), and Cd0.65Zn0.35Cr2Se4 and Cd0.55Zn0.45Cr2Se4 (system B), are similar to the values
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expected for Heisenberg ferromagnets. For the first compounds, the exponents are equal
within the error limits to the theoretical values [55], while for the others a slight increase of
β and a slight decrease ofγ are observed, like for amorphous compounds showing re-entrant
transitions. This is in agreement with the magnetic properties, which reveal a ferromagnetic
order where the perturbations are not important. We note that the Cd0.55Zn0.45Cr2Se4

sample shows a re-entrant transition, which is not the case for the Cd0.65Zn0.35Cr2Se4

sample. However, this transition could be present at temperatures below the lowest measured
temperature (8 K).

For the other samples, fairly strong deviations from Heisenberg ferromagnet values are
observed for the critical exponents.

For system A, the disorders increase withx (see section 3). Forx = 0.2, a re-entrant
transition is observed. Forx = 0.3 and 0.4, the properties are progressively modified,
indicating a more disordered state. For example, the two peaks of the imaginary part of the
alternative susceptibility, related to the paramagnetic–magnetic and re-entrant transitions,
partially recover. Forx = 0.5, spin-glass-like properties occur. The critical exponents
show an increase ofβ and a decrease ofδ with increasingx, i.e. with increasing magnetic
disorder.

For Cd0.45Zn0.55Cr2Se4 (system B), a re-entrant transition is present and the magnetic
properties indicate clearly a more disordered magnetic structure than for the other
compositions of the system. We findβ = 0.5 and δ = 2.8, i.e. a slight increase ofβ
and a net decrease ofδ with respect to the Heisenberg ferromagnet values.

For systems B and C, the number of non-magnetic atoms increases withx, and the
dilution of Fe3+ increases. These systems show local canted states (see section 3). With
increasing Fe dilution, the distribution of the canting angles enlarges and the average canting
angle increases at each site. As a consequence, the average magnitude of the transverse
spin componentSt increases. Moreover,St becomes more and more widely distributed.
Therefore, with increasingx, the magnetic disorder increases. For the exponent values, the
same variations, i.e. an increase ofβ and a decrease ofδ, are observed as for systems A
and B, with increasing magnetic disorder.

For system E, the same variation is also observed. With decreasingx, the number of
non-magnetic atoms at A sites increases. For the compositions studied, this number is large.
At B sites, the number of non-magnetic atoms decreases, but in all cases, it is too small to
perturb the magnetic order at A sites. Therefore, when decreasingx, the average canting
angle at B sites increases and, like for systems C and D, the magnetic disorder increases.

In the case of system F, the magnetic disorder results from both the random substitution
of non-magnetic atoms (Cd) at A sites and the anisotropic character of Mn3+. We recall
that for the pure compound (NiMn2O4), a complex triangular spin structure appears [52]
and that the number of substituted non-magnetic atoms (x = 0.2 and 0.4) is not sufficient to
destabilize the ferrimagnetic order in the case of isotropic magnetic ions [51]. Forx = 0.8
and 0.6, the properties are similar to those observed for the samples belonging to systems
C, D and E; however, it is difficult to evaluate the degree of magnetic disorder due to the
interplay of the two causes. In fact, the same values for the critical exponents are found
for the two compounds, with a strongly increasedβ-value and a strongly decreasedδ-value
with respect to the Heisenberg ferromagnet values.

In conclusion, we can say that when increasing the magnetic disorder, the exponentβ

increases and the exponentδ decreases.
In table 7, we have ranged the samples studied versus the decreasingδ-values. Homo-

geneous categories can be defined according toδ- andβ-values as well as according to the
magnetic properties.
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Table 7. The critical exponent values found in order of decreasingδ. The γ -exponent is
calculated from equation (6).

δ β γ Samples

1 4.9 0.38 1.48 A; 0 Ferromagnetic or
4.7 0.4 1.48 B; 0.35 very weak disorder
4.7 0.42 1.55 B; 0.45

2 2.8 0.5 0.9 B; 0.55 Appreciable disorder
2.6 0.9 1.44 E; 0.3
2.5 0.5 0.75 C; 1.20

3 2.2 0.7 0.84 D; 1.375 Intermediate disorder
2.0 0.9 0.9 C; 1.25
2.0 1.0 1.0 E; 0.2
1.9 0.9 0.8 A; 0.2, D; 1.5
1.8 0.7 0.56 F; 0.8, F; 0.6
1.8 1 0.8 C; 1.32, D; 1.625
1.7 0.9 0.63 A; 0.3

4 1.35 1.2 0.42 D; 1.75 Strong disorder
1.3 0.9 0.27 A; 0.4
1.3 1.2 0.36 E; 0.1
1.2 1.2 0.24 A; 0.5

The first category corresponds to exponent values very close to the 3D Heisenberg
ferromagnet ones. Ferromagnetic phases are observed or very weak magnetic disorder.
According to the typical values for various samples given in tables 5 and 6, not only does
the 3D Heisenberg ferromagnet belong (of course) to this category, but also so do the
amorphous ferromagnets showing re-entrant properties and two compounds with random
anisotropy.

For the second category, magnetic properties reveal appreciable magnetic disorder. The
δ-values range between 2.5 and 2.8 and theβ-values are not too far from the ferromagnet
value, except for the E(0.3) sample for which the classification remains ambiguous. The
two other compounds with random anisotropy, cited in table 6, also belong to this category.

The third category corresponds to medium to strong magnetic disorder from a magnetic
property point of view.δ ranges between 1.7 and 2.2 andβ lies in the range 0.9–1.0, except
for the sample D(1.375), which is intermediate between the second and third categories, and
for the samples F (β = 0.7) whose magnetic disorder derives from two sources (random
anisotropy and dilution of magnetic atoms). In this latter case, some deviations with respect
to the other systems can be understood.

Finally, the fourth category corresponds to samples with strong to very strong magnetic
disorder: spin-glass-like properties are found for the sample A(0.5), with the lowestδ-value.
δ ranges between 1.2 and 1.35 andβ between 0.9 and 1.2.γ -values will be discussed in
section 5.3.

In our opinion, the shifts that we obtain for theδ- and β-values with respect to the
3D Heisenberg ferromagnet values are related to the degree of disorder. Therefore, the
determination of the critical exponents can provide information on the degree of magnetic
disorder.

It is interesting to note the variation of the relative position of the branchesf+ andf−
as a function of the exponent values (and the magnetic disorder). When they are close to the
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Heisenberg ferromagnet values, the usual shape is obtained (figure 3), but whenβ increases
and δ decreases, the branches approach progressively. For the second category (table 7;
figure 6) the branches have nearly the usual shape. For the third category, the branches
begin to approach (figures 4 and 7) and, finally, for the fourth category, the branches
are close to one another (figure 5). In fact, when increasing the disorder, the differences
between magnetic and paramagnetic phases (especially if a cluster regime occurs—see
below) become less distinct. For example, in the paramagnetic regime, the spin moment
relaxes very quickly. Below the transition temperature, the spin moment is static for true
ferromagnets, while for local canted states the transverse spin component also relaxes very
quickly. In addition, a distribution of transition temperatures probably occurs, smoothing the
transition. In this case, the differences between the magnetic equations of state in magnetic
(f+) and paramagnetic (f−) regimes reduce and the branches approach.

To understand the variations ofβ and δ with the magnetic disorder, let us recall two
experimental properties. Firstly, the increase of the magnetization when decreasing the
temperature fromTC is more and more smooth when the magnetic disorder increases. In
fact, the magnetic order is well established only at low temperature due to the competing
exchange interactions and frustrations, which induce the disorders. Secondly, the magnetic
disorders consist in deviations from the averaged ferromagnetic or ferrimagnetic order. An
applied field reduces the disorder and causes an appreciable increase of the magnetization,
which is not the case for true ferromagnets. For example, for ferrite systems (C, D and E),
the saturation is not observed untilH = 20 T (figure 1). In this case, we can understand
the variations observed for the critical exponentsβ andδ. Let us recall the power laws (2)
and (5):

MS ∝ tβ for t > 0, t → 0 andH = 0 (2)

and

M ∝ H 1/δ at t = 0. (5)

On increasingβ, theMS-variation witht will be less, and on decreasingγ , theMS-variation
with H will be more pronounced. Of course, the power laws are strictly valid under the
cited conditions (equations (2) and (5)), but the trends deduced also obtain for the othert-
andH -values. In addition, due to the progressive increase of the magnetization withH and
t , the ranges ofH - and t-values for which the scaling is operant is extended with respect
to those for true ferromagnetic materials.

Finally, let us note two features. Firstly, the scaling is always operant if the transition
temperature is slightly distributed, in principle without modification of the critical exponents,
which is not the case when the distribution is large. In our samples, particularly when
clusters occur (see below), such a distribution could arise, which evidently smooths the
variation of the magnetization with the temperature. Secondly, it is often difficult to
determine the transition temperature from magnetic measurements, due to the smoothed
variation of the magnetization (or the susceptibility). This is not the case according to
scaling plots, from which an accurate value is obtained which corresponds to the averaged
value of the transition temperature if a slight distribution of this temperature is present.

5.2. Re-entrant transitions

Compounds with competing interactions and frustration can show a mixed state below a
certain temperatureTr in which the longitudinal spin component remains ferromagnetically
or ferrimagnetically ordered and the transverse spin componentSt presents a spin-glass
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state. AboveTr and below the magnetic–paramagnetic transition, the order is ferromagnetic
or ferrimagnetic (see the introduction). In fact, some magnetic perturbations persist in this
temperature range. Some properties reveal the mixed state, like a maximum in the imaginary
part of the alternative susceptibilityχac, a drop of the real part (χ ′ac) and a strong increase
of the coercive field at low temperature, as has been found for several compounds.

Table 8. Typical values of the critical exponents at the re-entrant transition for amorphous
ferromagnets.

System Tr (K) βr δr γr Reference

Fe10Pd72Si18 18 0.4 3.5 1.0 [58]
Gd72Ga18B10 40 0.4 4.0 1.2 [27]
(Fe0.68Mn0.32)75P16B6Al 3 38 0.4 4.5 1.4 [25]

At the re-entrant transition, the scaling is operant, with nowt = T/Tr − 1 (see the
introduction) which leads to the inversion of the branches of the magnetic equation of state
with respect to the magnetic–paramagnetic transition (f− corresponding now to the low-
temperature range). Typical values of the critical exponentsβr , δr andγr at the re-entrant
transition are given in table 8 for the same compounds as in the lower part of table 5.
One can see thatδr is smaller thanδ and βr = β, δ and β being the exponents at the
magnetic–paramagnetic transition.

For our samples, the magnetic properties reveal a re-entrant transition for some
compounds of systems A and B. For the other systems, the interpretation is more difficult.
Some properties are in agreement with the expected properties at the re-entrant transition
while other properties, such as the continuous increase of the magnetization for any
temperature below the magnetic transition, are somewhat in contradiction with the existence
of a re-entrant transition.

Therefore, we have tried to apply the scaling equation around the possible re-entrant
transition for all of the compounds studied. For systems A and B, it is not difficult to
determine the temperature region, while this is not the case for the other systems; the
temperature of the drop of the zero-field-cooled magnetization (orχ ′ac) is only a first
approach. Additional isotherm magnetization measurements have been performed for some
samples in order to confirm the results. They show that scaling plots are operant only for
some samples of systems A and B (table 3) and that they are not operant for 8 K< T < TN
for the other systems.

This latter result confirms our interpretation derived for local canted states [51]. For
these states, the transverse spin componentSt exists below the transition temperature
and relaxes very quickly between energy minima following a thermally activated process.
Hence, for low-field measurements (or Mössbauer spectroscopy), the magnetic state appears
collinear, when, for high-field measurements, canted structures are revealed. When
decreasing the temperature fromTN , St blocks progressively and at low temperature local
canted states are similar to mixed states. In this case, the scaling cannot operate because
the blocking process is progressive versus temperature and the blocking temperatures are
distributed. These features rule out the interpretation of the properties of similar systems in
terms of re-entrant transitions.

For system A, scaling is operant forx = 0.2, 0.3 and 0.4, but not forx = 0.5. This is
in agreement with the magnetic measurements. Forx = 0.5, a spin-glass-like state occurs
and therefore only one transition is expected. For system B, the properties are less clear
from magnetic measurement data. Forx = 0.45, a re-entrant transition could be expected,
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while for x = 0.55, it is difficult to choose between two transitions (including the re-entrant
transition) and only one (spin-glass-type order). The scaling is operant only forx = 0.55,
ruling out the possibility of the occurrence of this latter state. However, forx = 0.45, for
which the scaling is not operant, a re-entrant transition could occur at a temperature smaller
than our lowest measurement temperature (8 K), which could explain why we have not been
able to scale the magnetization. Finally,βr is close toβ andδr is slightly smaller thanδ,
like for amorphous compounds.

5.3. Cluster–paramagnetic transitions

True paramagnetic properties are not found in the vicinity of the magnetic–paramagnetic
transition (see the introduction). In the critical temperature region, fort < 0, the
susceptibility is described by the power law (3), i.e.χ ∼ (−t)−γ , with γ = 1.38 for 3D
Heisenberg ferromagnets. This law recovers Curie–Weiss behaviour, i.e.χ = Cp/(T − θp),
only if γ = 1 andT → ∞ (except that the latter condition is not necessary in the very
special case whereTC = θp).

In the case of a well established Curie–Weiss regime, outside the critical regime, the
Kouvel–Fisher exponent (equation (7)) is equal to

γ (T ) = T − TC
T − θp . (7a)

Therefore,γ (T ) shows a monotonic variation and tends to 1 whenT → ∞, with
γ (T ) < 1 for θp < TC .

However, in insulating systems where competing interactions occur, which causes
frustration and magnetic disorder, the Curie–Weiss regime is often well established only
for temperatures substantially higher than the critical temperature range. This could be due
to the existence, in the intermediate-temperature range, of a short-range spin order. In this
type of system, this order could consist in very small spin clusters of different sizes, which
behave superparamagnetically. In this case, the susceptibility is described by a Curie–
Weiss-type law where the Curie-like parameters (the constantC and the temperatureθ ) are
related to the magnetic moments of the clusters [13]. When increasing the temperature, the
clusters evolve, and they disappear when the paramagnetic regime is reached. Thus, we
observe forγ (T ) firstly a constant value in the critical regime and secondly a variation in
the intermediate regime following (7a). In this case, non-monotonic variation ofγ (T ) is
possible, as observed for some compounds, such as ZnxNi1−xFe2O4 [56].

Nevertheless, in some cases, the Curie-likeC-parameter remains constant over a certain
range of temperature above the critical regime. This means that the spin clusters do
not evolve in this temperature range. As an example, the variation of the inverse of
the susceptibility for Li1.16Ti1.32Fe0.52O4 [57] is shown in figure 12. In the so-called
paramagnetic phase, two regimes are clearly evident. In this case, we can expect that
firstly the scaling is operant atTC , since just above the critical regime there is no important
difference between a spin-cluster regime which evolves and one which is stabilized, and
that secondly the scaling is perhaps operant at the temperature at which the stabilized cluster
regime evolves toward a true paramagnetic phase.

At the magnetic transition, theγ -exponents decrease when the magnetic disorder
increases (table 7). As in section 5.1, a rough classification can be obtained by considering
decreasingγ -values instead of decreasingδ-values, though the classification according to
δ-values seems to be in better agreement with the magnetic properties. On the other hand,
the compounds showing a cluster–paramagnetic transition (table 4) belong to the bottom of
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Figure 12. The temperature dependence of
the inverse susceptibility above the mag-
netic transition for Li1.16Ti1.32Fe0.52O4.

category 3 and to category 4 (table 7). Thus, these compounds correspond to more disordered
systems, but do not show particularδ- andβ-values with respect to the compounds of the
same category for which no cluster–paramagnetic transition has been found. This shows
that in the critical region,γ does not depend very much on the type of the cluster regime,
as we discussed above.

Spin clusters can be characterized by weak interactions between clusters, smaller than
the thermal energy, and strong interactions inside the clusters. These conditions can be
fulfilled only if the number of lacking magnetic bonds, randomly distributed, is important.
This is realized in our compounds if the number of non-magnetic atoms is high (systems
C, D or E). However, it depends on the system, because either the distribution of the
magnetic atoms at the two sites and (or) the exchange integral values are not the same, or
the ferromagnetic and antiferromagnetic interactions almost cancel (systems A or B).

From magnetic properties, a well characterized cluster regime is found for the A(0.3),
A(0.4), C(1.32) and F(0.8) samples, but for the other samples, such as A(0.5), it is impossible
to reach a conclusion. However, if the scaling is operant at the cluster–paramagnetic
transition for the samples with a well characterized cluster regime, then it is also for the
A(0.5) sample. The exponent values are very similar for the samples, with 2.26 βc 6 2.5,
δc ≈ 1.2 and γc ≈ 0.47. We remark that, for this transition, thef± are almost linear
functions. This leads toχ ≈ constant× |t |−βc(δc−1) ≈ constant× |t |−γc . In this case, the
uncertainties inβc andδc are large and onlyγc can be relied upon. On the other hand, the
true paramagnetic regime is not reached in the critical region of the cluster–paramagnetic
transition, asγr is different from one, but this can be due to the difference between the
cluster–paramagnetic transition temperatureTcl andθp.

6. Conclusions

In conclusion, we have shown that the magnetic equation of state is valid in the vicinity
of the magnetic–paramagnetic transition for various spinel compounds showing magnetic
phases that are semi-disordered to greater and lesser extents. With increasing magnetic
disorder, the critical exponentsβ and δ deviate from 3D Heisenberg ferromagnet values,
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the former increasing and the latter decreasing. The exponent variations are explained
phenomenologically and allow a classification of the compounds according to the degree
of disorder. Moreover, the scaling plots permit a precise knowledge of the transition
temperature to be established, which is often difficult purely from magnetic measurements.
In some materials, the scaling is operant at the re-entrant transition at low temperature, but
we show that it is not operant when the magnetic order consists in local canted states arising
in diluted two-magnetic-sublattice systems. This definitively establishes the difference
between mixed and local canted states where for the former a phase transition occurs
for the transverse spin componentSt at the re-entrant transition while for the latter only a
progressive blocking ofSt occurs. For some compounds which present a well established
spin-cluster regime above the magnetic transition, we show that the scaling is operant as
expected at this transition, but also at the cluster–paramagnetic transition where the clusters
disappear. This demonstrates that the latter transition is a true phase transition, of which
the critical exponents are derived for the first time. Finally, we want to underline that the
study of scaling properties allows us to deduce numerous features, such as the existence of
phase transitions, the nature of the magnetic phases and the precise values of the transition
temperatures.
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